Filters and sets of Vitali type

Aleksander Cieślak
Wrocław University of Technology

Winter School in Abstract Analysis 2016, section Set Theory and Topology 30.01-06.02.2016, Hejnice

Introduction

Definition

Let \mathcal{F} be a nonprincipal filter on ω. For points $x=\left(x_{n}\right)_{n \in \omega}, y=\left(y_{n}\right)_{n \in \omega} \in\{0,1\}^{\omega}$ we define ralation:

$$
x \approx_{\mathcal{F}} y \text { iff }\left\{n \in \omega: x_{n}=y_{n}\right\} \in \mathcal{F}
$$

Clearly $\approx_{\mathcal{F}}$ is equevalence relation.

Introduction

Definition

Let \mathcal{F} be a nonprincipal filter on ω. For points $x=\left(x_{n}\right)_{n \in \omega}, y=\left(y_{n}\right)_{n \in \omega} \in\{0,1\}^{\omega}$ we define ralation:

$$
x \approx_{\mathcal{F}} y \text { iff }\left\{n \in \omega: x_{n}=y_{n}\right\} \in \mathcal{F}
$$

Clearly $\approx_{\mathcal{F}}$ is equevalence relation.
(1) $[x]_{\mathcal{F}}=$ abstract class of point x
(2) $\{0,1\} / \mathcal{F}=$ set of all abstract classes of relation $\approx_{\mathcal{F}}$
(3) We consider only nonprincipal filters.
(1) $\mathbf{0}=(0,0,0, \ldots)$ and $\mathbf{1}=(1,1,1, \ldots)$
($-x=x+1$

Basic properties

For any filters $\mathcal{F}_{0}, \mathcal{F}_{1}$ and \mathcal{F} on ω we have
(1) If $\mathcal{F}_{0} \subset \mathcal{F}_{1}$ then $[x]_{\mathcal{F}_{0}} \subset[x]_{\mathcal{F}_{1}}$ for each $x \in\{0,1\}^{\omega}$
(2) If $\mathcal{F}_{0} \subset \mathcal{F}_{1}$ then each selector of $\{0,1\}^{\omega} / \mathcal{F}_{1}$ can be extended to selector of $\{0,1\}^{\omega} / \mathcal{F}_{0}$
(3) If $F_{0} \subset \mathcal{F}_{1}$ then each element of $\{0,1\}^{\omega} / \mathcal{F}_{1}$ is disjoit union of some elements of $\{0,1\}^{\omega} / \mathcal{F}_{0}$
(1) Abstract class $[\mathbf{0}]_{\mathcal{F}}$ is a dense subgroup of $\{0,1\}^{\omega}$
(6) For each $x \in\{0,1\}^{\omega}$ we have $[x]_{\mathcal{F}}=[\mathbf{0}]_{\mathcal{F}}+x$ and $[-x]_{\mathcal{F}}=[\mathbf{1}]_{\mathcal{F}}+x$

Measurability

Selector S of $\{0,1\}^{\omega} / \mathcal{F}$ is \subset-maximal set such that for two distinct points $x, y \in S$ we have $x+y \notin[\mathbf{0}]_{\mathcal{F}}$.

Fact

If \mathcal{F} is filter on ω, \mathbf{I} is an ideal with Steinhaus property and S is selector of $\{0,1\}^{\omega} / \mathcal{F}$ then

$$
S \text { is } \mathbf{I} \text {-measureable } \Rightarrow S \in \mathbf{I}
$$

Fact

If \mathcal{F} is filter on ω, \mathbf{I} is an ideal with Steinhaus property and A is element of $\{0,1\}^{\omega} / \mathcal{F}$ then

$$
A \text { is } \mathbf{I} \text {-measureable } \Rightarrow A \in \mathbf{I}
$$

Definition

We say that subset X of classical Vitali V set is consistent if there exist ultrafilter \mathcal{U} such that $X \subset[\mathbf{0}]_{\mathcal{U}}$.
The smallest filter \mathcal{F} with $X \subset[\mathbf{0}]_{\mathcal{F}}$ we denote by \mathcal{F}_{X}.
For filter \mathcal{F} we define $V_{\mathcal{F}}=[\mathbf{0}]_{\mathcal{F}} \cap V$.

lemma

For any filter \mathcal{F} we have $\mathcal{F}=\mathcal{F}_{V_{\mathcal{F}}}$

Definition

For consistent $X \subset V$ we define set of forbidden points for X as follows

$$
\operatorname{Forb}(X)=\left\{y \in\{0,1\}^{\omega}: X \cup\{y\} \text { is not consistent }\right\}
$$

lemma

$-\operatorname{Forb}(X)=\left\{y \in\{0,1\}^{\omega}:-y \in \operatorname{Forb}(X)\right\} \subset[0]_{\mathcal{F}(X)}$

Theorem

For a filter \mathcal{F} if we have $x \notin[\mathbf{0}]_{\mathcal{F}} \cup[\mathbf{1}]_{\mathcal{F}}$ then both set

$$
\{x\} \cup V_{\mathcal{F}} \text { and }\{-x\} \cup V_{\mathcal{F}}
$$

are consistent.

Proof. If for example $\{x\} \cup V_{\mathcal{F}}$ is not consistent then $x \in \operatorname{Forb}\left(V_{\mathcal{F}}\right)$ and then from second lemma we have $-x \in-\operatorname{Forb}\left(V_{\mathcal{F}}\right) \subset[0]_{\mathcal{F}\left(V_{\mathcal{F}}\right)}$ and from first lemma we see that $x \in[\mathbf{1}]_{\mathcal{F}\left(V_{\mathcal{F}}\right)}=[\mathbf{1}]_{\mathcal{F}}$.

Theorem

Every consistent set $X \subset V$ can be extended to maximal with respect to inclusion consistent.

Theorem

For any $n \in \omega$ there exist a filter \mathcal{F} such that $\left|\{0,1\}^{\omega} / \mathcal{F}\right|=2^{n}$. If $n \in \omega$ is not power of two thent there is no filter \mathcal{F} such that $\left|\{0,1\}^{\omega} / \mathcal{F}\right|=n$.

Proof. For first part let $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}$ be distinct ultrafilters then $\mathcal{U}=\bigcap_{i=1}^{n} \mathcal{U}_{i}$ is filter with 2^{n} abstract classes.

$$
\{0,1\}^{\omega} / \mathcal{U}=\left\{\bigcap_{i=1}^{n}\left[a_{i}\right]_{\mathcal{U}_{i}}:\left(a_{i}\right)_{i=1}^{n} \in\{0,1\}^{n}\right\}
$$

For second part let \mathcal{F} be a filter with $\left|\{0,1\}^{\omega} / \mathcal{F}\right|=n$ and let $\left\{x_{k},-x_{k}: k=0,1, \ldots, n / 2\right\}$ be a selector of $\{0,1\}^{\omega} / \mathcal{F}$ with $x_{0}=\mathbf{0}$. For any $k=1, \ldots, n / 2$ both sets

$$
\left\{x_{k}\right\} \cup V_{\mathcal{F}} \text { and }\left\{-x_{k}\right\} \cup V_{\mathcal{F}}
$$

are consistent.

Thus from previous there exist two ultrafilters $\mathcal{U}_{0}^{k} \neq \mathcal{U}_{1}^{k}$ which both extends \mathcal{F} and also

$$
\left\{x_{k}\right\} \cup V_{\mathcal{F}} \subset[\mathbf{0}]_{\mathcal{U}_{0}^{k}} \text { and }\left\{-x_{k}\right\} \cup V_{\mathcal{F}} \subset[\mathbf{0}]_{\mathcal{U}_{1}^{k}} \text { (star) }
$$

Now as we already know from lemma above that

$$
\mathcal{U}=\bigcap_{k=1}^{n / 2}\left(\mathcal{U}_{0}^{k} \cap \mathcal{U}_{1}^{k}\right)
$$

is a filter which extends \mathcal{F} and has 2^{m} abstract classes for some $m \in \omega$ (we dont know if all $\left\{\mathcal{U}_{0}^{k}, \mathcal{U}_{1}^{k}: k=1, \ldots, n / 2\right\}$ are distinct). Moreover we claim that $\mathcal{U}=\mathcal{F}$. We know that $\mathcal{F} \subset \mathcal{U}$ so let assume that inclusion is proper. Then exist $k \in\{1, \ldots, n / 2\}$ with (wlog) $x_{k} \in[\mathbf{0}]_{\mathcal{U}}$ but then

$$
x_{k} \in[\mathbf{0}]_{\mathcal{U}}=\bigcap_{i=1}^{n / 2}[\mathbf{0}]_{\mathcal{U}_{0}^{i}} \cap[\mathbf{0}]_{\mathcal{U}_{1}^{i}}
$$

so in particular $x_{k} \in[\mathbf{0}]_{\mathcal{U}_{0}^{k}} \cap[\mathbf{0}]_{\mathcal{U}_{1}^{k}}$ which is imposible because of (star).

Theorem

There is no filter \mathcal{F} such that set $\{0,1\}^{\omega} / \mathcal{F}$ is countable.

Proof. The set

$$
E=\bigcap_{F \in \mathcal{F}}\{\mathcal{U}: \mathcal{U} \text { is an ultrafilter and } F \in \mathcal{U}\}
$$

is closed subset of $\beta \omega \backslash \omega$ and

$$
E=\{\mathcal{U}: \mathcal{U} \text { is ultrafilter and } \mathcal{F} \subset \mathcal{U}\}
$$

The set E is infinite: If $E=\left\{\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}\right\}$ then for $\mathcal{U}=\bigcap_{i=1}^{n} \mathcal{U}_{i}$ and X-selector of $\{0,1\}^{\omega} / \mathcal{F}$ take point $x \in X \cap[\mathbf{0}]_{\mathcal{U}} \backslash[\mathbf{0}]_{\mathcal{F}}$. Then set

$$
\{-x\} \cup V_{\mathcal{F}}
$$

is consistent and from previous theorem there exist ultrafilter \mathcal{U}_{n+1} with $\mathcal{F} \subset \mathcal{U}_{n+1}$ and $\{-x\} \cup V_{\mathcal{F}} \subset[\mathbf{0}]_{\mathcal{U}_{n+1}}$. Then $\mathcal{U}_{n+1} \neq \mathcal{U}_{i}$ for $i=1, \ldots, n$ because of $x \in[0]_{\mathcal{U}_{i}}$.

Set $E \subset \beta \omega \backslash \omega$ is closed and infinite thus $|E|=2^{2^{\aleph_{0}}}$. We write $\{0,1\}^{\omega} / \mathcal{F}=\left\{X_{n}: n \in \omega\right\}$ and construct a function

$$
\begin{gathered}
\Phi: E \rightarrow 2^{\omega} \\
\Phi(\mathcal{U})=\left(\phi_{n}^{\mathcal{U}}\right)_{n \in \omega} \in 2^{\omega}
\end{gathered}
$$

where following holds

$$
\begin{aligned}
\phi_{n}^{\mathcal{U}} & =0 \text { iff } X_{n} \subset[\mathbf{0}]_{\mathcal{U}} \\
\phi_{n}^{\mathcal{U}} & =1 \text { iff } X_{n} \subset[\mathbf{1}]_{\mathcal{U}}
\end{aligned}
$$

We check that Φ is $1-1$ which gives us contradiction $2^{2^{\aleph_{0}}} \leqslant 2^{\aleph_{0}}$.

If $\mathcal{U}_{0} \neq \mathcal{U}_{1}$ then $[\mathbf{0}]_{\mathcal{U}_{0}} \neq[\mathbf{0}]_{\mathcal{U}_{0}}$ and so there exist $n \in \omega$ with $X_{n} \subset[\mathbf{0}]_{\mathcal{U}_{0}}$ and $-X_{n} \subset[\mathbf{0}]_{\mathcal{U}_{1}}$ which gives us

$$
\phi_{n}^{\mathcal{U}_{0}}=0 \neq 1=\phi_{n}^{\mathcal{U}_{1}}
$$

Modification of proof shows that
If \mathcal{F} is such filter that $\{0,1\}^{\omega} / \mathcal{F}$ has cardinality κ for $\aleph_{0}<\kappa<2^{\aleph_{0}}$ then

$$
2^{2^{\aleph_{0}}}=2^{\kappa}
$$

Martin Axiom implies that no such filter exists

THANK YOU

