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Introduction

Definition
Let F be a nonprincipal filter on ω. For points
x = (xn)n∈ω, y = (yn)n∈ω ∈ {0, 1}ω we define ralation:

x ≈F y iff {n ∈ ω : xn = yn} ∈ F

Clearly ≈F is equevalence relation.

1 [x]F =abstract class of point x
2 {0, 1}/F =set of all abstract classes of relation ≈F
3 We consider only nonprincipal filters.
4 0 = (0, 0, 0, ...) and 1 = (1, 1, 1, ...)
5 −x = x+ 1
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Basic properties

For any filters F0,F1 and F on ω we have
1 If F0 ⊂ F1 then [x]F0 ⊂ [x]F1 for each x ∈ {0, 1}ω

2 If F0 ⊂ F1 then each selector of {0, 1}ω/F1 can be extended to
selector of {0, 1}ω/F0

3 If F0 ⊂ F1 then each element of {0, 1}ω/F1 is disjoit union of some
elements of {0, 1}ω/F0

4 Abstract class [0]F is a dense subgroup of {0, 1}ω

5 For each x ∈ {0, 1}ω we have [x]F = [0]F + x and [−x]F = [1]F + x
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Measurability

Selector S of {0, 1}ω/F is ⊂-maximal set such that for two distinct
points x, y ∈ S we have x+ y /∈ [0]F .

Fact
If F is filter on ω, I is an ideal with Steinhaus property and S is
selector of {0, 1}ω/F then

S is I-measureable ⇒ S ∈ I

Fact
If F is filter on ω, I is an ideal with Steinhaus property and A is
element of {0, 1}ω/F then

A is I-measureable ⇒ A ∈ I
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Definition
We say that subset X of classical Vitali V set is consistent if there
exist ultrafilter U such that X ⊂ [0]U .
The smallest filter F with X ⊂ [0]F we denote by FX .
For filter F we define VF = [0]F ∩ V .

lemma
For any filter F we have F = FVF
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Definition
For consistent X ⊂ V we define set of forbidden points for X as follows

Forb(X) = {y ∈ {0, 1}ω : X ∪ {y} is not consistent}

lemma
−Forb(X) = {y ∈ {0, 1}ω : −y ∈ Forb(X)} ⊂ [0]F(X)
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Theorem
For a filter F if we have x /∈ [0]F ∪ [1]F then both set

{x} ∪ VF and {−x} ∪ VF

are consistent.

Proof. If for example {x} ∪ VF is not consistent then x ∈ Forb(VF )
and then from second lemma we have −x ∈ −Forb(VF ) ⊂ [0]F(VF ) and
from first lemma we see that x ∈ [1]F(VF ) = [1]F .

Theorem
Every consistent set X ⊂ V can be extended to maximal with respect
to inclusion consistent.
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Theorem
For any n ∈ ω there exist a filter F such that |{0, 1}ω/F| = 2n.
If n ∈ ω is not power of two thent there is no filter F such that
|{0, 1}ω/F| = n.

Proof. For first part let U1, ...,Un be distinct ultrafilters then
U =
⋂n
i=1 Ui is filter with 2n abstract classes.

{0, 1}ω/U = {
⋂n
i=1[ai]Ui : (ai)ni=1 ∈ {0, 1}n}

For second part let F be a filter with |{0, 1}ω/F| = n and let
{xk,−xk : k = 0, 1, ..., n/2} be a selector of {0, 1}ω/F with x0 = 0. For
any k = 1, ..., n/2 both sets

{xk} ∪ VF and {−xk} ∪ VF

are consistent.
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Thus from previous there exist two ultrafilters Uk0 6= Uk1 which both
extends F and also

{xk} ∪ VF ⊂ [0]Uk0 and {−xk} ∪ VF ⊂ [0]Uk1 (star)

Now as we already know from lemma above that

U =
⋂n/2
k=1(Uk0 ∩ Uk1 )

is a filter which extends F and has 2m abstract classes for some m ∈ ω
( we dont know if all {Uk0 ,Uk1 : k = 1, ..., n/2} are distinct ).
Moreover we claim that U = F . We know that F ⊂ U so let assume
that inclusion is proper. Then exist k ∈ {1, ..., n/2} with (wlog)
xk ∈ [0]U but then

xk ∈ [0]U =
⋂n/2
i=1[0]Ui0 ∩ [0]Ui1

so in particular xk ∈ [0]Uk0 ∩ [0]Uk1 which is imposible because of (star).
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Theorem
There is no filter F such that set {0, 1}ω/F is countable.

Proof. The set

E =
⋂
F∈F{U : U is an ultrafilter and F ∈ U}

is closed subset of βω \ ω and

E = {U : U is ultrafilter and F ⊂ U}

The set E is infinite: If E = {U1, ...,Un} then for U =
⋂n
i=1 Ui and

X-selector of {0, 1}ω/F take point x ∈ X ∩ [0]U \ [0]F . Then set

{−x} ∪ VF

is consistent and from previous theorem there exist ultrafilter Un+1
with F ⊂ Un+1 and {−x} ∪ VF ⊂ [0]Un+1 . Then Un+1 6= Ui for
i = 1, ..., n because of x ∈ [0]Ui .
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Set E ⊂ βω \ ω is closed and infinite thus |E| = 22
ℵ0 .

We write {0, 1}ω/F = {Xn : n ∈ ω} and construct a function

Φ : E → 2ω

Φ(U) = (φUn )n∈ω ∈ 2ω

where following holds

φUn = 0 iff Xn ⊂ [0]U
φUn = 1 iff Xn ⊂ [1]U

We check that Φ is 1− 1 which gives us contradiction 22
ℵ0 ¬ 2ℵ0 .

If U0 6= U1 then [0]U0 6= [0]U0 and so there exist n ∈ ω with Xn ⊂ [0]U0
and −Xn ⊂ [0]U1 which gives us

φU0n = 0 6= 1 = φU1n
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Modification of proof shows that

If F is such filter that {0, 1}ω/F has cardinality κ for ℵ0 < κ < 2ℵ0

then

22
ℵ0 = 2κ

Martin Axiom implies that no such filter exists
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THANK YOU
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