Filters and sets of Vitali type

Aleksander Cieślak

Wrocław University of Technology

Winter School in Abstract Analysis 2016, section Set Theory and Topology 30.01 - 06.02.2016, Hejnice

Let \mathcal{F} be a nonprincipal filter on ω . For points $x = (x_n)_{n \in \omega}, y = (y_n)_{n \in \omega} \in \{0, 1\}^{\omega}$ we define ralation:

$$x \approx_{\mathcal{F}} y \text{ iff } \{n \in \omega : x_n = y_n\} \in \mathcal{F}$$

Clearly $\approx_{\mathcal{F}}$ is equevalence relation.

Let \mathcal{F} be a nonprincipal filter on ω . For points $x = (x_n)_{n \in \omega}, y = (y_n)_{n \in \omega} \in \{0, 1\}^{\omega}$ we define ralation:

$$x \approx_{\mathcal{F}} y \text{ iff } \{n \in \omega : x_n = y_n\} \in \mathcal{F}$$

Clearly $\approx_{\mathcal{F}}$ is equevalence relation.

- $I [x]_{\mathcal{F}} = \text{abstract class of point } x$
- **2** $\{0,1\}/\mathcal{F}$ =set of all abstract classes of relation $\approx_{\mathcal{F}}$
- We consider only nonprincipal filters.

0
$$\mathbf{0} = (0, 0, 0, ...)$$
 and $\mathbf{1} = (1, 1, 1, ...)$

() -x = x + 1

ヘロト 人間 とくほ とくほ とう

For any filters $\mathcal{F}_0, \mathcal{F}_1$ and \mathcal{F} on ω we have

- If $\mathcal{F}_0 \subset \mathcal{F}_1$ then $[x]_{\mathcal{F}_0} \subset [x]_{\mathcal{F}_1}$ for each $x \in \{0,1\}^{\omega}$
- ② If $\mathcal{F}_0 \subset \mathcal{F}_1$ then each selector of $\{0,1\}^{\omega}/\mathcal{F}_1$ can be extended to selector of $\{0,1\}^{\omega}/\mathcal{F}_0$
- Solution If F₀ ⊂ 𝓕₁ then each element of {0,1}^ω/𝓕₁ is disjoit union of some elements of {0,1}^ω/𝓕₀
- **4** Abstract class $[\mathbf{0}]_{\mathcal{F}}$ is a dense subgroup of $\{0, 1\}^{\omega}$
- **(a)** For each $x \in \{0,1\}^{\omega}$ we have $[x]_{\mathcal{F}} = [\mathbf{0}]_{\mathcal{F}} + x$ and $[-x]_{\mathcal{F}} = [\mathbf{1}]_{\mathcal{F}} + x$

・ 回 ト ・ ヨ ト ・ ヨ ト

Selector S of $\{0,1\}^{\omega}/\mathcal{F}$ is \subset -maximal set such that for two distinct points $x, y \in S$ we have $x + y \notin [\mathbf{0}]_{\mathcal{F}}$.

Fact

If \mathcal{F} is filter on ω , **I** is an ideal with Steinhaus property and S is selector of $\{0,1\}^{\omega}/\mathcal{F}$ then

S is $\mathbf{I}\text{-measureable} \Rightarrow S \in \mathbf{I}$

Fact

If \mathcal{F} is filter on ω , **I** is an ideal with Steinhaus property and A is element of $\{0,1\}^{\omega}/\mathcal{F}$ then

 $A \text{ is } \mathbf{I}\text{-measureable} \Rightarrow A \in \mathbf{I}$

We say that subset X of classical Vitali V set is consistent if there exist ultrafilter \mathcal{U} such that $X \subset [\mathbf{0}]_{\mathcal{U}}$. The smallest filter \mathcal{F} with $X \subset [\mathbf{0}]_{\mathcal{F}}$ we denote by \mathcal{F}_X . For filter \mathcal{F} we define $V_{\mathcal{F}} = [\mathbf{0}]_{\mathcal{F}} \cap V$.

lemma

For any filter \mathcal{F} we have $\mathcal{F} = \mathcal{F}_{V_{\mathcal{F}}}$

< □ > < 🗇 >

For consistent $X \subset V$ we define set of forbidden points for X as follows

 $Forb(X) = \{y \in \{0,1\}^{\omega} : X \cup \{y\} \text{ is not consistent}\}\$

lemma

$$-Forb(X) = \{ y \in \{0,1\}^{\omega} : -y \in Forb(X) \} \subset [0]_{\mathcal{F}(X)}$$

★ 콜 ⊁ : ★ 콜 ⊁

Theorem

For a filter \mathcal{F} if we have $x \notin [\mathbf{0}]_{\mathcal{F}} \cup [\mathbf{1}]_{\mathcal{F}}$ then both set

```
\{x\} \cup V_{\mathcal{F}} \text{ and } \{-x\} \cup V_{\mathcal{F}}
```

are consistent.

Proof. If for example $\{x\} \cup V_{\mathcal{F}}$ is not consistent then $x \in Forb(V_{\mathcal{F}})$ and then from second lemma we have $-x \in -Forb(V_{\mathcal{F}}) \subset [0]_{\mathcal{F}(V_{\mathcal{F}})}$ and from first lemma we see that $x \in [\mathbf{1}]_{\mathcal{F}(V_{\mathcal{F}})} = [\mathbf{1}]_{\mathcal{F}}$.

Theorem

Every consistent set $X \subset V$ can be extended to maximal with respect to inclusion consistent.

Theorem

For any $n \in \omega$ there exist a filter \mathcal{F} such that $|\{0,1\}^{\omega}/\mathcal{F}| = 2^n$. If $n \in \omega$ is not power of two thent there is no filter \mathcal{F} such that $|\{0,1\}^{\omega}/\mathcal{F}| = n$.

Proof. For first part let $\mathcal{U}_1, ..., \mathcal{U}_n$ be distinct ultrafilters then $\mathcal{U} = \bigcap_{i=1}^n \mathcal{U}_i$ is filter with 2^n abstract classes.

$$\{0,1\}^{\omega}/\mathcal{U} = \{\bigcap_{i=1}^{n} [a_i]_{\mathcal{U}_i} : (a_i)_{i=1}^n \in \{0,1\}^n\}$$

For second part let \mathcal{F} be a filter with $|\{0,1\}^{\omega}/\mathcal{F}| = n$ and let $\{x_k, -x_k : k = 0, 1, ..., n/2\}$ be a selector of $\{0,1\}^{\omega}/\mathcal{F}$ with $x_0 = \mathbf{0}$. For any k = 1, ..., n/2 both sets

$$\{x_k\} \cup V_{\mathcal{F}} \text{ and } \{-x_k\} \cup V_{\mathcal{F}}$$

are consistent.

・ロト ・回ト ・ヨト ・ヨトー

Thus from previous there exist two ultrafilters $\mathcal{U}_0^k \neq \mathcal{U}_1^k$ which both extends \mathcal{F} and also

$$\{x_k\} \cup V_{\mathcal{F}} \subset [\mathbf{0}]_{\mathcal{U}_0^k} \text{ and } \{-x_k\} \cup V_{\mathcal{F}} \subset [\mathbf{0}]_{\mathcal{U}_1^k} \text{ (star)}$$

Now as we already know from lemma above that

$$\mathcal{U} = \bigcap_{k=1}^{n/2} (\mathcal{U}_0^k \cap \mathcal{U}_1^k)$$

is a filter which extends \mathcal{F} and has 2^m abstract classes for some $m \in \omega$ (we dont know if all $\{\mathcal{U}_0^k, \mathcal{U}_1^k : k = 1, ..., n/2\}$ are distinct). Moreover we claim that $\mathcal{U} = \mathcal{F}$. We know that $\mathcal{F} \subset \mathcal{U}$ so let assume that inclusion is proper. Then exist $k \in \{1, ..., n/2\}$ with (wlog) $x_k \in [\mathbf{0}]_{\mathcal{U}}$ but then

$$x_k \in [\mathbf{0}]_{\mathcal{U}} = \bigcap_{i=1}^{n/2} [\mathbf{0}]_{\mathcal{U}_0^i} \cap [\mathbf{0}]_{\mathcal{U}_1^i}$$

so in particular $x_k \in [\mathbf{0}]_{\mathcal{U}_0^k} \cap [\mathbf{0}]_{\mathcal{U}_1^k}$ which is imposible because of (star).

Theorem

There is no filter \mathcal{F} such that set $\{0,1\}^{\omega}/\mathcal{F}$ is countable.

Proof. The set

 $E = \bigcap_{F \in \mathcal{F}} \{ \mathcal{U} : \mathcal{U} \text{ is an ultrafilter and } F \in \mathcal{U} \}$

is closed subset of $\beta \omega \setminus \omega$ and

 $E = \{ \mathcal{U} : \mathcal{U} \text{ is ultrafilter and } \mathcal{F} \subset \mathcal{U} \}$

The set E is infinite: If $E = \{\mathcal{U}_1, ..., \mathcal{U}_n\}$ then for $\mathcal{U} = \bigcap_{i=1}^n \mathcal{U}_i$ and *X*-selector of $\{0, 1\}^{\omega} / \mathcal{F}$ take point $x \in X \cap [\mathbf{0}]_{\mathcal{U}} \setminus [\mathbf{0}]_{\mathcal{F}}$. Then set

$$\{-x\} \cup V_{\mathcal{F}}$$

is consistent and from previous theorem there exist ultrafilter \mathcal{U}_{n+1} with $\mathcal{F} \subset \mathcal{U}_{n+1}$ and $\{-x\} \cup V_{\mathcal{F}} \subset [\mathbf{0}]_{\mathcal{U}_{n+1}}$. Then $\mathcal{U}_{n+1} \neq \mathcal{U}_i$ for i = 1, ..., n because of $x \in [\mathbf{0}]_{\mathcal{U}_i}$.

Set $E \subset \beta \omega \setminus \omega$ is closed and infinite thus $|E| = 2^{2^{\aleph_0}}$. We write $\{0,1\}^{\omega}/\mathcal{F} = \{X_n : n \in \omega\}$ and construct a function

$$\Phi: E \to 2^{\omega}$$
$$\Phi(\mathcal{U}) = (\phi_n^{\mathcal{U}})_{n \in \omega} \in 2^{\omega}$$

where following holds

$$\phi_n^{\mathcal{U}} = 0 \text{ iff } X_n \subset [\mathbf{0}]_{\mathcal{U}}$$
$$\phi_n^{\mathcal{U}} = 1 \text{ iff } X_n \subset [\mathbf{1}]_{\mathcal{U}}$$

We check that Φ is 1-1 which gives us contradiction $2^{2^{\aleph_0}} \leq 2^{\aleph_0}$.

If $\mathcal{U}_0 \neq \mathcal{U}_1$ then $[\mathbf{0}]_{\mathcal{U}_0} \neq [\mathbf{0}]_{\mathcal{U}_0}$ and so there exist $n \in \omega$ with $X_n \subset [\mathbf{0}]_{\mathcal{U}_0}$ and $-X_n \subset [\mathbf{0}]_{\mathcal{U}_1}$ which gives us

$$\phi_n^{\mathcal{U}_0} = 0 \neq 1 = \phi_n^{\mathcal{U}_1}$$

Modification of proof shows that

If \mathcal{F} is such filter that $\{0,1\}^{\omega}/\mathcal{F}$ has cardinality κ for $\aleph_0 < \kappa < 2^{\aleph_0}$ then

$$2^{2^{\aleph_0}} = 2^{\kappa}$$

Martin Axiom implies that no such filter exists

THANK YOU

æ

・ロト ・四ト ・ヨト ・ヨト